	Government College for Women, Lakhanmajra						
	Lesson Plan						
Class:	1st Semester Subject: Inorganic Chemistry						
Session	: 2021-22 Teacher : Mrs. Anita Amani						
	Syllabus						
	Idea of de Broglie matter waves, Heisenberg uncertainty principle, atomic orbitals, ,						
	quantum numbers, radial and angular wave functions and probability distribution						
October 2021	curves, shapes of s, p, d orbitals.						
2021	Revision and Test						
	General principles of periodic table: Aufbau and Pauli exclusion principles, Hund's						
November 2021	multiplicity rule. Electronic configurations of the elements, effective nuclear charge,						
	Slater's rules. Atomic and ionic radii, ionization energy, electron affinity and						
	electronegativity - definition, methods of determination or evaluation, trends in						
	periodic table (in s & p block elements).						
	Revision and Test						
	Valence bond theory and its limitations, directional characteristics of covalent bond,						
	various types of hybridization and shapes of simple inorganic molecules and ions (
December	BeF ₂ , BF ₃ , CH ₄ , PF ₅ , SF ₆ , IF ₇ SO4 ² , ClO ⁴) Valence shell electron pair repulsion						
2021	(VSEPR) 5 theory to NH ₃ , H ₃ O ⁺ , SF ₄ , CIF ₃ , ICI ²⁻ and H ₂ O. MO theory of						
	heteronuclear (CO and NO) diatomic. molecules, , bond stren gth and bond energy,						
	percentage ionic character from dipole moment and electronegativity difference.						
	Revision and Test						
January 2021	Ionic structures (NaCl, CsCl, ZnS (Zinc Blende), CaF2) radius ratio effect and						
	coordination number, limitation of radius ratio rule, lattice defects, semiconductors,						
	lattice energy (methamtical derivation excluded) and Born-Haber cycle, solvation						
	energy and its relation with solubility of ionic solids, polarizing power and						
	polarisability of ions, Fajan's rule						
	Revision and Test						

ついうりょう ロフフン

Government College for Women, Lakhanmajra Lesson Plan

Class : 3rd Semester Subject : Inorganic Chemistry

Session: 2021-22 Teacher: Mrs. Anita Amani

	Syllabus			
October 2021	mistry of Elements of Ist transition series: Definition of transition elements, tion in the periodic table, General characteristics & properites of Ist transition nents,. Structures & properties of some compounds of transition elements – TiO ₂ , Cl ₂ , FeCl ₃ , CuCl ₂ and Ni (CO) ₄ ision and Test			
November 2021	Section-B Chemistry of Elements of IInd & IIIrd transition series General characteristics and properties of the IInd and IIIrd transition elements Comparison of properties of 3d elements with 4d & 5d elements with reference only to ionic radii, oxidation state, magnetic and Spectral properties and stereochemistry Revision and Test			
December 2021	Section-C Coordination Compounds Werner's coordination theory, effective atomic number concept, chelates, nomenclature of coordination compounds, isomerism in coordination compounds, valence bond theory of transition metal complexes Revision and Test			
January 2021	Section-D Non-aqueous Solvents Physical properties of a solvent, types of solvents and their general characteristics, reactions in non-aqueous solvents with reference to liquid NH ₃ and liquid SO ₂ Revision and Test			

Government College for Women, Lakhanmajra

Lesson Plan

Class: 5th Semester

Subject:

Inorganic Chemistry

Session : 2021-22

Teacher:

Mrs. Anita Amani

October 2021

Metal-ligand Bonding in Transition Metal Complexes Limitations of valence bond theory, an elementary idea of crystal-field theory, crystal field splitting in octahedral, tetrahedral and square planar complexes, factors affecting the crystal-field parameters.

Syllabus

Revision and Test

November 2021

Thermodynamic and Kinetic Aspects of Metal Complexe A brief outline of thermodynamic stability of metal complexes and factors affecting the stability, substitution reactions of square planar complexes of Pt(II).

Revision and Test

December 2021

Magnetic Properties of Transition Metal Complexe Types of magnetic behaviour, methods of determining magnetic susceptibility, spin-only formula. L-S coupling, correlation of

Revision and Test

January 2021

Electron Spectra of Transition Metal Complexes Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectrochemical series. Orgel-energy level diagram for d¹ and d⁹ states, discussion of the electronic spectrum of [Ti(H2O)₆]³⁺ complex ion.

Revision and Test

	Government College	e for Women, Lakhanm	najra		
Lesson Plan					
Class	: 1st Semester	Subject:	Physical Chemistry		
Session	: 2021-22	Teacher:	Mr. Naveen		
	Syllabus				
October 2021	Gaseous States Maxwell's distribution of velocities and energies (derivative excluded) Calculation of root mean square velocity, average velocity and morprobable velocity. Collision diameter, collision number, collision frequency at mean free path. Deviation of Real gases from ideal behaviour. Derivation of Vanda Waal's Equation of State, its application in the calculation of Boyle's temperatu (compression factor) Explanation of behaviour of real gases using Vander Waal equation. Revision and Test				
November 2021	Critical Phenomenon: Critical temperature, Critical pressure, critical volume and their determination. PV isotherms of real gases, continuity of states, the isotherms of Vander Waal's equation, relationship between critical constants and Vander Waal"s constants. Critical compressibility factor. The Law of corresponding states. Liquifiction of gases. Revision and Test				
December 2021	Liquid States Structure of liquids. Properties of liquids – surface tension, viscosity vapour pressure and optical rotations and their determination. Revision and Test				
anuary 021	Solid State Classification of solid of interfacial angles (ii) Law Symmetry elements of crystals lattices, crystal system. Xray differentiation of crystal structure solids, liquids and liquid crystal crystals. Revision and Test	of rationality of indices Definition of unit cell fraction by crystals. Derive of NaCl, KCl. Liquid cry	(iii) Law of symmetry. & space lattice. Bravais vation of Bragg equation. stals: Difference between		

Government College for Women, Lakhanmajra

Lesson Plan

Class : 3rd Semester

Subject:

Organic Chemistry

Session: 2021-22

Teacher:

Syllabus

Mr. Naveen

October 2021

Monohydric alcohols nomenclature, methods of formation by reduction of aldehydes, ketones, carboxylic acids and esters. Hydrogen bonding. Acidic nature. Reactions of alcohols. Dihydric alcohols — nomenclature, methods of formation, chemical reactions of vicinal glycols, oxidative cleavage [Pb(OAc) 4 and HIO4] and pinacol-pinacolone rearrangement. Epoxides Synthesis of epoxides. Acid and base-catalyzed ring opening of epoxides, orientation of epoxide ring opening, reactions of Grignard and organolithium reagents with epoxides

Revision and Test

November 2021

Phenols Nomenclature, structure and bonding. Preparation of phenols, physical properties and acidic character. Comparative acidic strengths of alcohols and phenols, resonance stabilization of phenoxide ion. Reactions of phenols — electrophilic aromatic substitution, Mechanisms of Fries rearrangement, Claisen rearrangement, Reimer-Tiemann reaction, Kolbe's reaction and Schotten and Baumann reactions.

Revision and Test

December 2021

Ultraviolet (UV) absorption spectroscopy Absorption laws (Beer-Lambert law), molar absorptivity, presentation and analysis of UV spectra, types of electronic transitions, effect of conjugation. Concept of chromophore and auxochrome. Bathochromic, hypsochromic, hyperchromic and hypochromic shifts. UV spectra of conjugated enes and enones, Woodward- Fieser rules, calculation of O max of simple conjugated dienes and D,E-unsaturated ketones. Applications of UV Spectroscopy in structure elucidation of simple organic compounds.

Revision and Test

January 2021

Carboxylic Acids & Acid Derivatives Nomenclature of Carboxylic acids, structure and bonding, physical properties, acidity of carboxylic acids, effects of substituents on acid strength. Preparation of carboxylic acids. Reactions of carboxylic acids. Hell-Volhard-Zelinsky reaction. Reduction of carboxylic acids. Mechanism of decarboxylation. Structure, nomenclature and preparation of acid chlorides, esters, amides and acid anhydrides. Relative stability of acyl derivatives. Physical properties, interconversion of acid derivatives by nucleophilic acyl substitution. Mechanisms of esterification and hydrolysis (acidic and basic). Revision and Test

	Government College for Women, Lakhanmajra Lesson Plan						
Class :	5th Semester	Subject:	Organic Chemistry				
Session :	2021-22	Teacher:	Mr. Naveen				
		Syllabus					
October 2021	NMR Spectroscopy-I Principle of nuclear magnetic resonance, the PM spectrum, number of signals, peak areas, equivalent and nonequivalent proton positions of signals and chemical shift, shielding and deshielding of protons, protocounting, splitting of signals and coupling constants, magnetic equivalence of protons. Revision and Test						
	NMR Spectroscopy-II Discus						
November 2021		ethyl acetate, toluer	ne, benzaldehyde and				
December 2021	Carbohydrates-I Classification osazone formation, interconversion of aldoses. diastereomers. Conversion of and esters. Determination of respectives of P(+) places & F	ersion of glucose and fruc Configuration of monosac glucose into mannose. For ing size of glucose and fruc	ctose, chain lengthening and echarides. Erythro and threo emation of glycosides, ethers ectose. Open chain and cyclic				
	structure of D(+)-glucose & D ribose and deoxyribose. Revision and Test						
January 2021	Carbohydrates-II An introdu and polysaccharides (starch an Organometallic Compounds (formation, structure and chem	nd cellulose) without involv Organomagnesium compo	ving structure determination. ands: the Grignard reagents-				

chemical reactions. Organolithium compounds: formation and chemical reactions.

Revision and Test

LESSON PLAN

Mrs. Heena(2020-21) Odd Semester

CH 302 (Physical Chemistry)

October 2020: Thermodynamics-I- Definition of thermodynamic terms: system, surrounding etc. Types of systems, intensive and extensive properties. State and path functions and their differentials. Thermodynamic process. Concept of heat and work. Zeroth Law of thermodynamics, First law of thermodynamics: statement, definition of internal energy and enthalpy. Heat capacity, heat capacities at constant volume and pressure and their relationship. Joule's law – Joule – Thomson coefficient for ideal gas and real gas: and inversion temperature.

November 2020: Thermodynamics-II- Calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process, Temperature dependence of enthalpy, Kirchoff's equation. Bond energies and applications of bond energies.

December 2020: Chemical Equilibrium -Equilibrium constant and free energy, concept of chemical potential, Thermodynamic derivation of law of chemical equilibrium. Temperature dependence of equilibrium constant; Van't Hoff reaction isochore, Van't Hoff reaction isotherm. Le-Chatetier's principle and its applications Clapeyron equation and Clausius — Clapeyron equation its applications.

January 2021: Distribution Law- Nernst distribution law – its thermodynamic derivation, Modification of distribution law when solute undergoes dissociation, association and chemical combination. Applications of distribution law: (i) Determination of degree of hydrolysis and hydrolysis constant of aniline hydrochloride. (ii) Determination of equilibrium constant of potassium tri-iodide complex and process of extraction.

LESSON PLAN

Mrs. Heena(2020-21) Odd Semester

CH 502 (Physical Chemistry)

October 2020: Quantum Mechanics-I- Black-body radiation, Plank's radiation law, photoelectric effect, heat capacity of solids, Compton effect, wave function and its significance of Postulates of quantum mechanics, quantum mechanical operator, commutation relations, Hamiltonian operator, Hermitian operator, average value of square of Hermitian as a positive quantity, Role of operators in quantum mechanics, To show quantum mechanically that position and momentum cannot be predicated simultaneously, Determination of wave function & energy of a particle in one dimensional box, Pictorial representation and its significance.

e:

n

at

20

is

n

tr

rį

1

November 2020: Physical Properties and Molecular Structure- Optical activity, polarization – (Clausius – Mossotti equation). Orientation of dipoles in an electric field, dipole moment, included dipole moment, measurement of dipole moment-temperature method and refractivity method, dipole moment and structure of molecules, Magnetic permeability, magnetic susceptibility and its determination. Application of magnetic susceptibility, magnetic properties – paramagnetism, diamagnetism and ferromagnetics.

December 2020: Spectroscopy-I Introduction: Electromagnetic radiation, regions of spectrum, basic features of spectroscopy, statement of Born Oppenheimer approximation, Degrees of freedom. Rotational Spectrum- Diatomic molecules. Energy levels of rigid rotator (semi-classical principles), selection rules, spectral intensity distribution using population distribution (Maxwell-Boltzmann distribution), determination of bond length, qualitative description of non-rigid rotor, isotope effect.

January 2021: Spectroscopy-II Vibrational spectrum Infrared spectrum: Energy levels of simple harmonic oscillator, selection rules, pure vibrational spectrum, intensity, determination of force constant and qualitative relation of force constant and bond energies, effects of anharmonic motion and isotopic effect on the spectra., idea of vibrational frequencies of different functional groups. Raman Spectrum: Concept of polarizibility, pure rotational and pure vibrational Raman spectra of diatomic molecules, selectin rules, Quantum theory of Raman spectra.